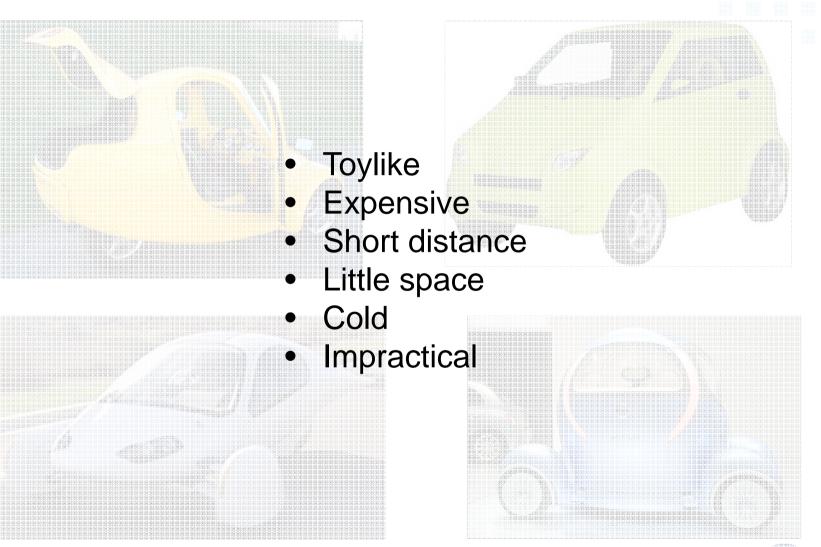


Potentials of E-Mobility

Solutions in industrial logistics

- Background
- Application
- Outlook

Images of E-mobility



November 2010

E-Mobility

Images of E-mobility

E-Mobility

E-mobility news today ...

German Electric Car Goes 600km On A Single Charge

Posted on Oct 27, 10 12:12 AM PDT

- 605km (376m) from Munich to Berlin
- World record
- Average of 90 km/h (56mph)
- Including the use of heating and illumination
- Special Lithium-Metal-Polymer accumulator
- 4 seats and boot usable battery small and powerful
- Lasts for 500.000km until it needs to be exchanged

The beginnings of E-Mobility

- first electric passenger train in 1879.
- 1881 first electric car by Gustave Trouvé
 - combining modern engine and battery development
- Predominant until the mid 1930s
 - Longer distances
 - Faster: first car above 100km/h
 - quicker refuelling times
- growing petroleum infrastructure

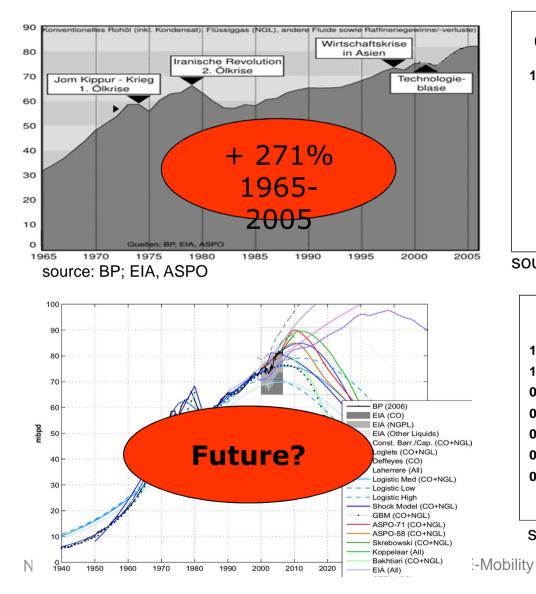
 mass production of gasoline
 vehicles by Ford Motor Company
 removed E-Vehicles from US
 market by the 1930s

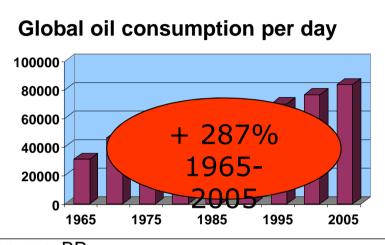
E-Mobility in Rail Transport

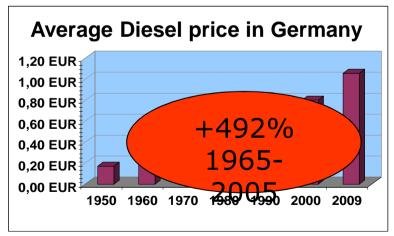
- Today: Electric Rail transport in 134 countries,
- in Germany: 19,857 km electrified railway network
- Why?
 - Better performance faster
 - high efficiency of electric motors (often above 90%)
 - lower maintenance costs
 - lower energy costs
 - lack of direct pollution
 - quieter than diesel locomotives
 - regenerative braking

General reasons to develop E-mobility

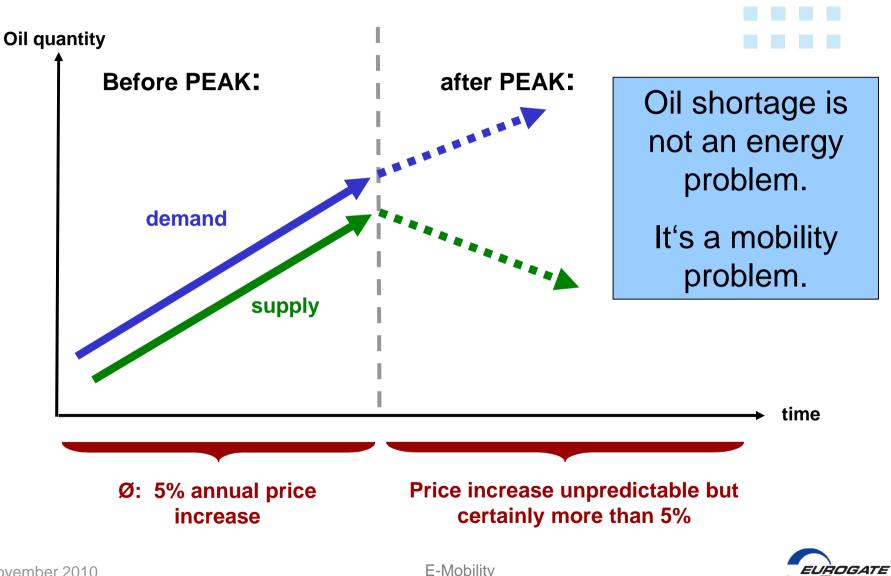
- No direct emissions
 - CO; VOC; PM
 - important for urban environment
- Less noise, Less vibration
- Less GHG emission
 - 27% net reduction of CO2; CH4; NOx (coal based)
- Grid stabilization potential
 - off-peak electricity
 - variable-output power sources (PV, wind)
- Energy resilience:
 - electricity can be multi-sourced: Petroleum independence







Petroleum dependence ...


```
source: BP
```


source: German federal office of statistics

Peak Oil Problem

Individual reasons to decide for E-mobility

Efficiency:

- Electric motors achieve 80-90%
- Combustion engines max. 43% (often only 15% to move)
- Regenerative braking and suspension

• A+	Zen	0 CO,	
50 A			
В		2006 Part L	
C			
D		Stock Ave	
E			
F		Rating	302
G			

The

average rating	is anticipated	to be C to	D

	Electric	Combustion
kWh/100km	10 - 23	50 - 100
EUR/kWh	0,20 €	0,12€
EUR/100km	2,00 € - 4,60 €	6,00 € - 12,00 €

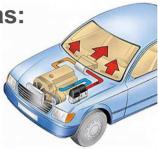
Consumption / Costs

- Electric vehicle: 10-23 kWh/100 km
- Combustion car: to 50-100 kWh/100km

Practical reasons

- No need for gearboxes -> high torque from rest
- simple driving schemes
- no oxygen demand submarines, mines, workshops
- charging everywhere no petrol station needed

Disadvantages – Problems ...


Battery problems

- range 100-150km
- Battery depletion over time
- High cost for batteries

Heating and cooling ideas:

- using solar power
- using super-insulated cabins
- using heat-exchanger connected with battery-core

Other:

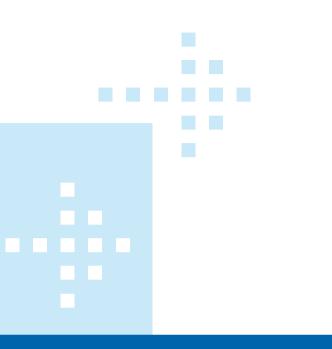
- Lacking Infrastructure
- Dangerours silence to pedestrainians
- Longer braking distances -> safety protection
- Little experience of fire control

Charging and Storage - Solution

On-board rechargeable electricity storage system

- Various battery types: NiCd, NiMH, Zinc-air, Molten salt, Lead acid, Zinc-bromine flow...
- Modern research on Li-ion, Li-polymer:
 - ➔ high energy density
 - → Long cycle lifetime
 - → recharged in minutes instead of hours
 - → 75-130W/kg
 - → lithium reserves for 4 billion e-cars

Other possible systems


- Fluid replacement: vanadium-based electrolyte (expensive)
- Standardized inductive charging system minimized cabling
- Permanent charging

E-Mobility

November 2010

- Background
 - Application
- Outlook

Present E-Vehicles

- Toyota Prius 1997
 - first mass produced hybrid gasolineelectric car
 - most fuel efficient gasoline car in the U.S
 - regenerative braking
- Th!nk City / Mitsubishi i MiEV 2008/09
 - crash-tested electric cars
 - 110 /130 km/h (67/80mph), 160km
 - 8h charging, Lithium battery
- Teslar Roadstar 2010
 - 320km (200mi) per charge
 - Max. 125 mph (201 km/h)

Application - EUROGATE

6months testing "Tazzari ZERO"

- On the terminal
- Between terminals
- Home use of staff
- Technical Details:
 - 13,5kWh/100km (2,7EUR versus 6,5EUR)
 - Vmax: 100kmh, 140km per charge
 - lithium ion batteries
 - 80% charging in 1h, (100% in 9h)
 - 542kg,
- First feedback:
 - Huge interest
 - Simple interior, little comfort
 - Easy application, fast acceleration

E-Bus

.....

Electric bus

- since 1992 a battery-electric minibus operates in St. Helen, GB
- has carried 11.3 million passengers
- Has run 3,100,000 kilometres (1,930,000 mi)

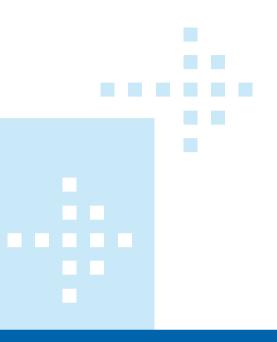
The 2008 Beijing Olympics

- 50 electric buses,
- range of 130 km (81 mi) despite air conditioning
- Lithium-ion batteries completely replaced
- 0.62 kWh/km (1kWh/m) -> 6l fuel per 100km

E-Truck

Port of Los Angeles: Air Quality Management District

- E-truck for short-range heavy-duty
- hauling a 40-foot (12 m) cargo container up to 27t (60,000 lb)
- speeds up to 40 mph (64 km/h)
- range of 30-60 miles (48-97 km).
- 2kWh/m (1.2 kWh/km) 12l/100km compared to 35l for normal Trucks



Further Application:

- Wherever: Frequent stopping, starting or idling is needed
- milk float, garbage trucks, ...

- Background
- Application
- Outlook

- in 2004: 55,852 Full-electric vehicles in US (+ 39% p.a.);
- In 2011: 1750 estimated in Germany

Centre of Automotive Research; "by 2025, all passenger cars sold in Europe will be electric or hybrid"

Nissan CEO: "2020 one in 10 cars globally will run on battery power alone"

 US Department of Energy states: "84% of existing vehicles could be switched over to plug-in hybrids without requiring any new grid infrastructure"

Incentives and promotion

United States

- \$2.4 billion for electric vehicles
- battery development, electric motors, plug-In Hybrids, electric infrastructure concepts

China:

 US\$15 billion to initiate an electric car industry

Germany:

- 1 Mio. Vehicles until 2020 planned
- 500Mio. funding for research and development

Denmark:

privileged taxation, Free parking/charging in large cities

Portugal:

- public network of 1 385 charging points –
- 50 fast ones (25cities)

Thank you for your attention

EUROGATE Environmental Management Hanna Pötter 0421-14253415 hanna.poetter@eurogate.eu

