

6th European Conference on ICT in Transport Logistics

LOGISTICS OPTIMIZATION BY THE USE OF TRUCK FCD – ENHANCED ROUTING FOR HEAVY GOODS VEHICLES

Michael Schygulla, PTV Group

www.ptvgroup.com

the mind of movement

AGENDA

- 1. Introduction PTV Group
- 2. Background Floating Car Data (FCD), challenges
- 3. Requirements from eFreight Project and Business case
- 4. Data basis and analyses
- 5. Network calibration and RE-Layer development
- 6. Next Level: Truck traffic patterns

Michael Schygulla Zaragoza, 23.10.13

WE PLAN AND OPTIMISE EVERYTHING THAT MOVES PEOPLE AND GOODS WORLDWIDE.

the mind of movement

ONE WORLD – TWO MARKETS

OPTIMISING THE FLOW OF PEOPLE OPTIMISING THE FLOW OF GOODS

LOGISTICS VALUE NETWORK – OUR PRODUCTS

PTV SMARTOUR

Tour Planning & Optimisation Increased efficiency of delivery processes

PTV MAP&GUIDE

Transport Route Planning The transport route planner

PTV MAP& MARKET

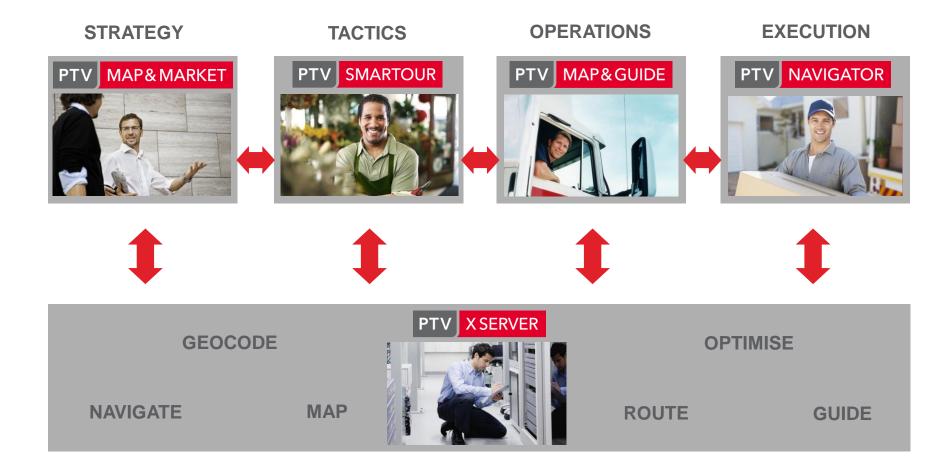
Geomanagement & Field Force Sales efficiency – optimal sites, regions and field force structures

PTV NAVIGATOR

Navigation Solutions Route guidance for commercial fleets

PTV X SERVER

Developer & Partner Solutions Software components for 3rd party solutions



LOGISTICS VALUE NETWORK – THE VALUE CHAIN

BACKGROUND: FLOATING CAR DATA

FCD for passenger cars are available. Key technologies are:

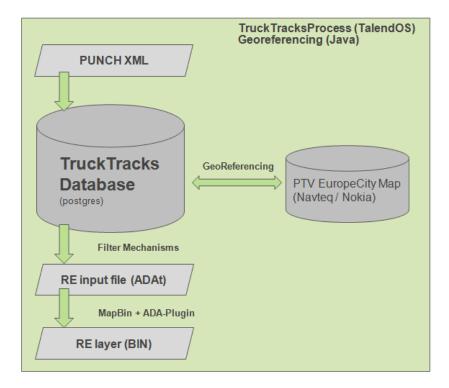
- GPS / compass / accelerometer / gyroscopes now common parts of mobile/ smartphones
- Mobile communication coverage
- Mobile communication bandwidth

FCD coming from Trucks – logistic fleets haven't been processed before

- Fleet size and character (vehicle types)
- Transport flows on corridors
- Timeframe of available data

REQUIREMENTS TO PROCESS FCD

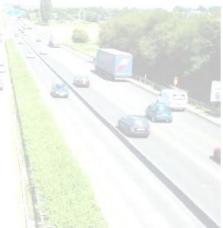
- Only few attributes required:
 - One vehicle position at least every minute
 - One position bundle at least every 5 minutes


id	Х	у	h	t	V
----	---	---	---	---	---

- Data format independent, most common: XML-Files from Onboard Computers
- Traces should contain position, speed, id and timestamp
- Further data could be used for validation (e.g. heading)
- Setting up stabile technical database for retrieval of data and mapmatching process

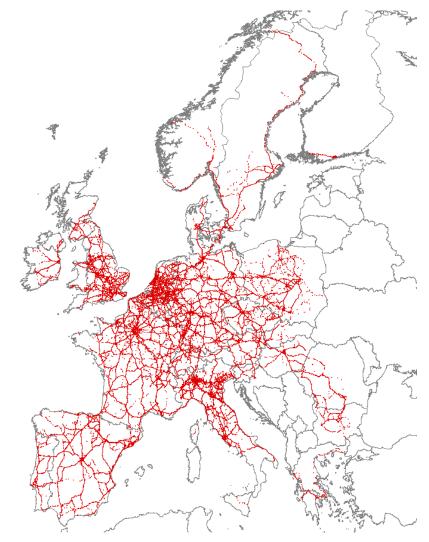
CHALLENGES OF FCD PROCESSING

- Methodologically: Distinguish individual or temporary behavior (such as parking vehicles or braking maneuvers) from traffic-related behavior (such as congestions).
- Technologically: Implement a system, capable to compute several hundred routings per second.
- Implement a Georeferencing system to validate the GPS traces on the driven segments



REQUIREMENTS FROM PROJECT AND BUSINESS CASE

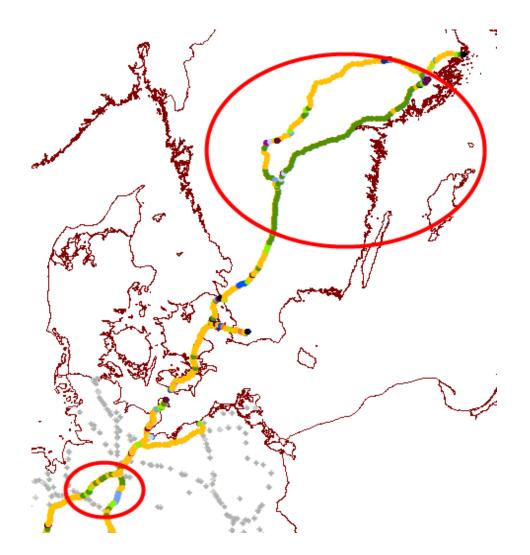
Main focus of developments


- Developments focused on road transport optimisation
- Enhancement of planning and routing
- Utilization of fleet data all over Europe
- Consideration of fleet specific operation profiles
- Better and more accurate planning/ routing results
- Test environment for demonstration

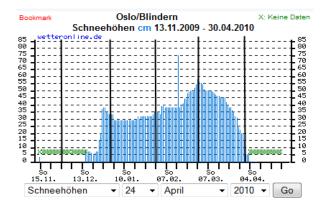
BASIS FOR ENHANCED ETA CALCULATIONS

- Database: 15 months of trace data from trucks, unique heavy goods vehicle fleet of ~ 1000 trucks
- Traces: 14.994.637 valid points with Speed > 0
- All traces with speed 1 95 km/h are being used
- Mapmatching with 1.237.994
 Network-Segments

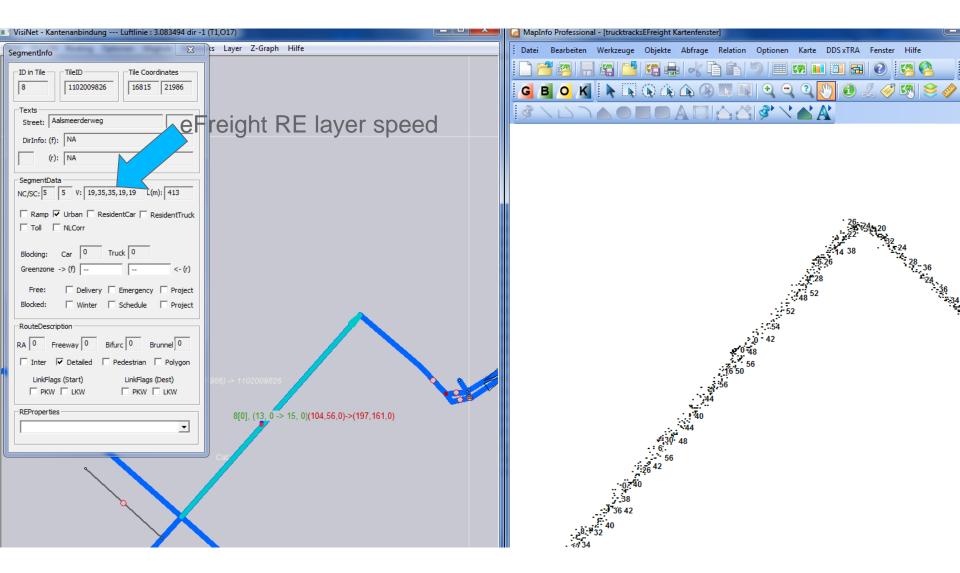
PROCESSING OF DATA AND RESULTS


- comparison of speed values on specific segments with other relevant values :
 - Network related speed values
 - Truck profile related values
 - Navteq speed/daytime per segment

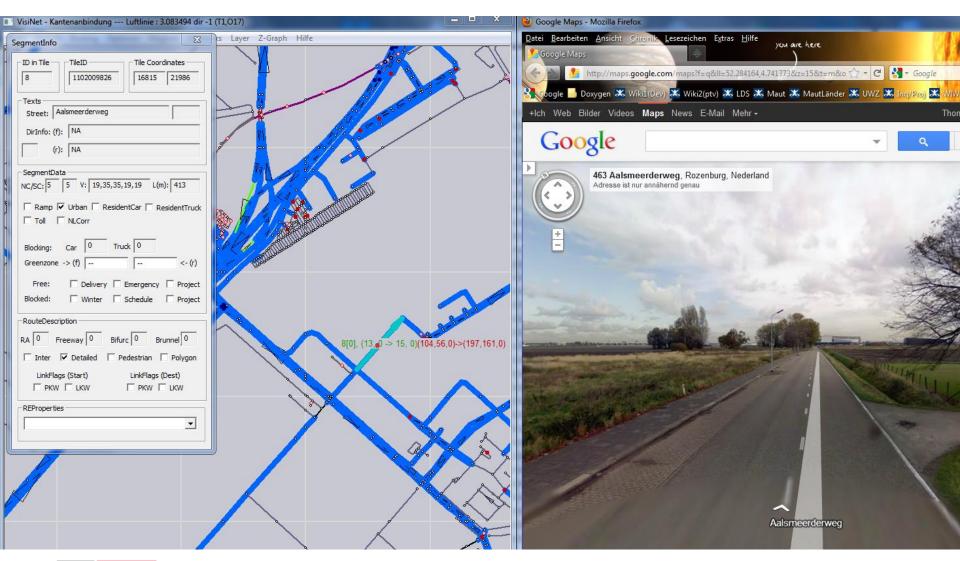
- Development and creation of specific data layer
 - Specific layer additional to standard in Routing engine
 - Network calibration and detailed analyses of different corridors


TRACE ANALYSES PER DATA SOURCE

<u>Construction sites(?)</u> <u>Congestion</u> Bremen – Hamburg

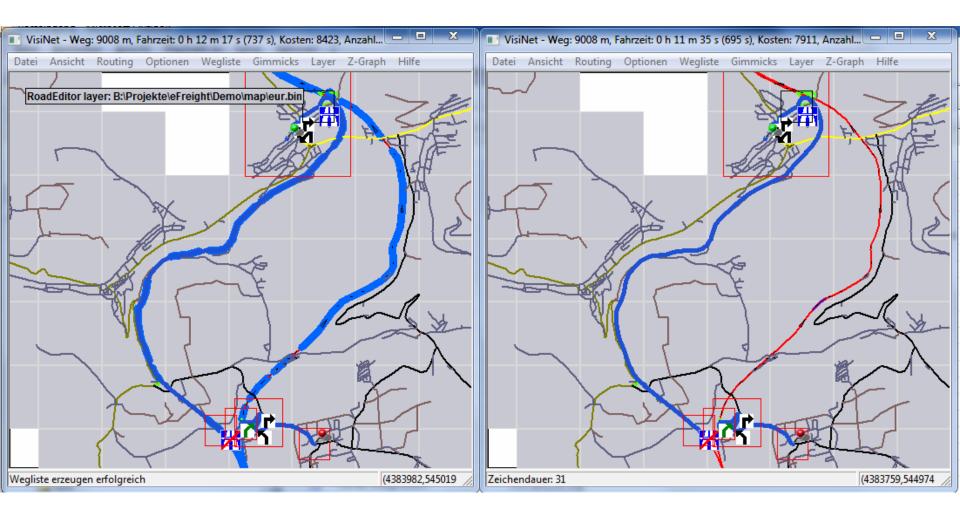

Hannover - Hamburg (congestion?)

<u>Slower in sweden</u> Snow heights and season effects



NETWORK CALIBRATION - EXAMPLES

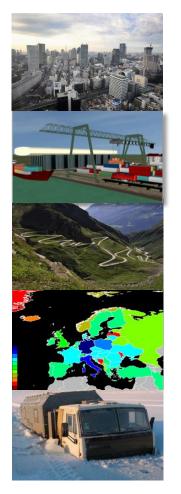
NETWORK CALIBRATION - EXAMPLES



VISUALIZATION – RE LAYER SEGMENT INFO - FRA

VisiNet - Kantenanbindung Luftlinie : 7.744686 dir -1 (T1,O26)				
Datei Ansicht Routing Optionen Wegliste Gimmicks Layer Z-Graph				
RoadEditor layer: C:UsersismilDocumentsiProjekteleFreightDemoiDemoi				
	84956 Tile Coordinates			ITT TO BE AND
Street: Flughafen Fi Dirinfo: (f): NA	irankfurt	THACSHI	VEENER	J. B. K
SegmentData	21,4,4,21,21 L(m): 469			KIKK KXZ
	ResidentCar ResidentTruck			
Toll NLCorr				
Blocking: Car 3 Greenzone -> (ŕ)			XIDEIX	FXX F
Free: V Deliv	ivery 🔽 Emergency 🗆 Project		ATX ATX	
Bioked: Wind RouteDescription	iter Schedule Project	11.5 2		
	Bifurc 0 Brunnel 0		- J JANA	STANKY
	ed 🗆 Pedestrian 🗖 Polygon		AN AN AND	THAT
LinkFlags (Start)	LinkFlags (Dest)			
REProperties		E FIT	Muran X	HEEK
				LANT
		A HIHIT		LTAHT
				ATTXA
				HIKK
		I HIER		
THE REFERENCE	HANNER AND			
	HAHEL	HJ' AT	A A A A A A A A A A A A A A A A A A A	THAT
	AFTA DELA	X /HA	The for Highert	
Zeichendauer: 0			I. L. L. LINTY	(4356625,5502669) NUM

PTV GROUP


EXAMPLE: RE LAYER ROUTING SLOWER

OBSERVATIONS FROM ANALYSES

Time losses of fleet according to FCD

Europe wide in dense areas and main highways(A6 in Ger).

Close to ferry terminals.

Hills, alpine areas

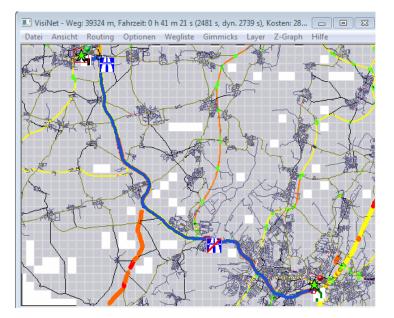
Country related driving speed – differences in nl, swe, ita

Weather and seasons

CONCLUSIONS

- Setting up test environment for ETA solution and route calculation successful
- Comparison of different routings possible
- Standard planning process "as it is" not sufficient/ accurate
- Routing results with RE-Layer in some cases faster than standard
 - Due to large amount of trips at night
- Time losses often at ramp (not only on road)
- Better accuracy of route calculation for individual segment
- Further consideration and developments in frame of GET project

NEXT LEVEL: TRUCK SPEED PATTERNS


More data needed for stabile processing of speed pattern for trucks per hour

green: eFreight truck blue: Navteq red: TomTom

ROUTING EXAMPLE

test route on locations 10b and 11b, starting at 06:00

starting at 07:00

 $06:00 \rightarrow 2556 \text{ s} (42:36 \text{ min})$ $07:00 \rightarrow 2739 \text{ s} (45:39 \text{ min})$ static $\rightarrow 2481 \text{ s} (41:21 \text{ min})$

THANK YOU FOR THE ATTENTION!

Michael Schygulla Project Manager PTV Group Concepts & Solutions Logistics Software Tel.: +49 721 9651-7284 michael.schygulla@ptvgroup.com

PTV GROUP

TU

the mind of movement

E