

Sustainable deployment of cooperative ITS for logistics - Evaluation

Dr. Georgia Aifadopoulou Centre for Research and Technology Hellas Hellenic Institute of Transport

•Evaluation is the process of determining the value, the importance and the quality of a thing, of a process and of a project based on predetermined criteria.

- Understand the impacts
- Quantify the benefits
- Help make future investment decisions
- Optimize existing system operation and design

Field operational tests

Impact monitoring and Simulation/Models

Source: EEG TEMPO Euro-Regional Evaluation Guidelines, 2005

The EasyWay project proposes the following classification of Field Operational Tests (FOTs):

- Pilot project: technical focus on meeting the specifications on a wide area
- Implementation project: evaluation of socio-economic impacts of the proposed solution
- Demonstration project: focus on scalability combining the above two categories

Field operational tests

Source: EasyWay Euro-Regional Project Evaluation Guidelines, 2005

Evaluation framework of COGISTICS

- FESTA (FREILOT, COMPASS4D)
 - Research questions, hypothesis, indicators, measurements
- AMITRAN
 - Methodologies for CO2 emissions estimation
- TRADITIONAL TOOLS
 - CBA, CEA, MCA
- DESIGN SCIENCE (innovative products)
 - Functionality, completeness, consistency, usability
- AGILE APPROACH
 - Customer oriented design (flexible)

Evaluation framework of COGISTICS

FESTA (FREILOT, COMPASS4D)

Evaluation within the project

Evaluation within the project

• Problem: Large variability of results (due to the

1 2%5 \$3 3	14mp20100ns38% 47%		Energy savings	
12%-14%		56%	Reduced emissions	
	Research team	Signifi	icant assumptions	
0%	Mandava S., Boriboonsomsin K., Barth M. (2009)	Light traffi	Light traffic conditions	
	Li M., Boriboonsomsin K., Wu G., Zhang W.B., Barth M. (2009)	Two conse	Two consequent signalized intersections	
	Barth M., Mandava S., Boriboonsomsin K., Xia H. (2011)	Signalized	Signalized arterial	
	Xia H., Boriboonsomsin K., Barth M. (2013)	Medium d	Medium demand and low user penetration rates	
	Barth M., Boriboonsomsin K. (2009)	Real world	Real world experimental run	
	Vreeswijk J.D., Mahmod M.K.M., van Arem B. (2010)	Adaptive k	Adaptive balancing and control system	
	Schuricht P., Michler O., Bäker B. (2011)	Very low t	Very low traffic conditions	
56%	Asadi B, Vahidi A. (2011)	Integration	n of dynamic eco-driving into adaptive cruise control	

- Need to define evaluation "standards"
 - Road type (arterial, urban, interurban)
 - Geographic extent (urban area, route)
 - "Network" characteristics (spacing, cycle time)
 - Congestion (high, medium, low, very low)
 - Penetration (infrastructure and vehicle side)
 - Service(s) logic ("hand made")
 - Simulation algorithm (traffic + fuel/emissions)
- Need for standardized test beds

- Early evaluation results based on simulations should be taken into account during the implementation of the ITS
 - The System will collapse if provided during peak hours
 - Priority can be provided to up to x trucks
 - Distance between intersections should be larger than x m
 - Scaling issues
- Monitoring is fundamental (early detection of problems)
 - Technical issues
 - Organization issues
 - Operation issues

- Do not forget the aim of the service (society, profit, environment)
- Stakeholders commitment should be achieved from the start of the project (self-sustainable services)
- Standards should be used, but not always will be available (one step forward)

Sustainable deployment of cooperative ITS for logistics - Evaluation

Dr. Josep Maria Salanova Grau +302310498433 / jose@certh.gr Dr. Georgia Aifadopoulou +302310498457 / gea@certh.gr

Thank you for your attention!

7th ECITL Conference 5th – 7th November 2014 Dortmund

