

Implications of Cooperative Adaptive Cruise Control for the Traffic Flow

A Simulation Based Analysis

Axel Wolfermann, Stephan Müller

German Aerospace Center (DLR) at a Glance

- 5.100 employees working
 in 27 research institutes and facilities
 - at 8 sites
 - in 7 field offices.
- Offices in Brussels, Paris and Washington

Program Directorates

- → Aeronautics
- → Space
- → Transport
- → Energy

Research at the DLR Institute of Transport Research

- → analysis of the **Transport Demand** in private and commercial transport
- Model-Based Analysis of the impacts of technical, organisational and political transport related measures
- → development and assessment of Future Scenarios

Agenda

Motivation

Introduction Cooperative Adaptive Cruise Control (CACC)

Methodology Simulation based assessment

Results Impact of CACC on Traffic Flow

Discussion

Motivation

Goods Transport on the road is attractive... ...when the roads are not congested

Cooperation Adaptive Cruise Control (CACC)

Generell Mode of Operation of CACC

- → Trucks driving connected in a platoon
- → Leading vehicle is driven manually, followers are steered fully automated
- ✓ Up to 7 vehicles can be coupled

Research on CACC

→ USA

 → California PATH

→ Europe

- → PROMOTE CHAUFFEUR I/II 1996-2003
 - Demonstration of Technical Feasibility
- → SARTRE (Safe Road Trains for Environment) 2009-2012
- → Germany
 - EFAS (Szenarios of Deployment of Driver Assistance Systems in Goods Traffic) 2001-2002
 - MFG (Preparing Measures for practical Deployment of Driver Assistance Systems in Goods Traffic) 2003-2004
 - → KONVOI 2005-2008

Research on CACC – Viability

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Research on CACC – Impacts

Research on CACC – Impacts

Research on CACC – Impacts

in der Helmholtz-Gemeinschaft

Impact of CACC on the capacity **Methodology**

Outline

\neg Question:

Impact of linked road trains on the capacity in relation to penetration rate, number of trucks etc.?

Microscopic traffic flow simulation (VISSIM) without and with equipped trucks

→ Szenarios

- \neg motorway, no intersections, three lanes, one-way, slope of 1 %
- → varying...
 - → traffic volume
 - → number of trucks
 - → share of CACC-equipped trucks

Special View on implemented CACC-Trucks

- → Lenght distribution of trucks based on real data
- Only Trailer-Trucks and Drawbar Combination Trucks are equipped (~80 % of all trucks on motorway)
- → Number of trucks in platoon uniformly distributed

Calibration of VISSIM

- → Fitting of q-v-curves (no trucks, 20 % trucks, 10 % trucks)
- → benchmark: HBS (German HCM)
- → subsequent model tuning by driver behavior (many parameters)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Calibration Process: No trucks

in der Helmholtz-Gemeinschaft

Slide 17 tions of CACC on Traffic Flow :> Müller, Wolfermann > 4th ECITL Thessaloniki >13th October 2011

Calibration Process: 20% trucks

Slide 18

in der Helmholtz-Gemeinschaft

Calibration Process: 10 % trucks for validation

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 19 s of CACC on Traffic Flow :> Müller, Wolfermann > 4th ECITL Thessaloniki >13th October 2011

Impact of CACC on the capacity **Results**

Results of the simulation

Effects on Traffic Flow with 50 % CACC-equipped Trucks
 CACC has a significant effect on traffic flow

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Results in Detail

- up to 6 % higher capacity (traffic volume at breakdown speed)
- → insignificant effects for low penetration rate

Discussion

Conclusion

- Positive impact on capacity quantified (~5 % for 50 % penetration rate) based on realistic vehicle mix
- high penetration rate of CACC required for significant overall impact on capacity
- → To the positive effects of CACC
 - → Fuel Saving
 - → Safety
 - we can add
 - → Capacity

Outlook

- \neg quantitative results can be used to calibrate (macroscopic) models
- \neg effect of coupling and decoupling yet to be incorporated
- → extension to different vehicle types (passenger cars) possible

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Thank You Very Much For Your Attention!

Dipl.-Ing. Stephan Müller Dr.-Ing. Axel Wolfermann

German Aerospace Center (DLR) stephan.mueller@dlr.de axel.wolfermann@dlr.de

